Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

O-Phenyl (triphenylphosphoniomethyl)phosphonate phenol solvate: supramolecular structure generated by O—H···O, C—H···O and C—H··· π (arene) hydrogen bonds

Lilianna Chęcińska, a* Agnieszka J. Rybarczyk-Pirek, a Zbigniew H. Kudzin and Andrzej Okruszek dec

^aDepartment of Crystallography and Crystal Chemistry, University of Łódź, Pomorska 149/153, 90 236 Łódź, Poland, ^bDepartment of Organic Chemistry, University of Łódź, Narutowicza 68, 90 136 Łódź, Poland, and ^cDepartment of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90 363 Łódź, Poland, and Institute of Technical Biochemistry, Technical University of Łódź, Stefanowskiego 4/10, 90 924 Łódź, Poland

Correspondence e-mail: lilach@uni.lodz.pl

Received 27 June 2007 Accepted 3 July 2007 Online 9 August 2007

The title compound, $C_{25}H_{22}O_3P_2\cdot C_6H_6O$, has a zwitterionic betaine-like structure and crystallizes as a phenol solvate. The two molecular components are held together by an almost linear intermolecular $O-H\cdots O$ hydrogen bond. The structure also contains three weak $C-H\cdots O$ and two $C-H\cdots \pi$ (arene) interactions.

Comment

Betaine (N,N,N-trimethylglycine) acts as an important biochemical donor of the methyl group for tetrahydrofolic acid $(N^5, N^{10}$ -methylenetetrahydrofolate synthesis) and homocysteinic acid (methionine synthesis) (Stryer, 1995). The phosphonic analogue of betaine - trimethylammoniummethanophosphonic acid - was first synthesized over five decades ago (Medved & Kabachnik, 1951; Kabachnik & Medved, 1953; Myers & Jibril, 1957); more than a decade ago, its biological activity became recognized (Abdel-Ghany et al., 1993). However, to our knowledge, no example of a betaine analogue containing two P atoms (phosphoniummethylenephosphonic acid or its ester) has been described in the literature. We present here the synthesis and crystal and molecular structures of the first phosphoniophosphonic analogue of betaine, namely O-phenyl (triphenylphosphoniomethyl)phosphonate as a phenol solvate, (I).

The first example of phosphoniummethylenephosphonic acid was synthesized in the form of the *O*-phenyl ester by controlled hydrolysis of [(diphenoxyphosphinyl)methylidene]triphenylphosphorane, (II), and obtained in the crystalline form as the phenol solvate, (I). Its structure was

tentatively assigned by MS, NMR and elemental analysis; however, an unequivocal confirmation was obtained from crystallographic analysis.

The molecular structure of (I), with the atom-numbering scheme, is shown in Fig. 1. The phosphonate molecule exists as a zwitterion. The positive charge is located on atom P1, while the negative charge is attributed formally to atom O2. Taking into account the P2-O2 and P2-O3 bond lengths (Table 1), partial delocalization of the charge between the two O atoms within the O2 \cdots P2 \cdots O3 fragment can be proposed. The P2-O3 bond is slightly shorter than the P2-O2 bond; however, both distances are longer than the P=O linkage within (C,N)(O)₂-P=O systems [1.457 (9) Å; Allen *et al.*, 1987] and close to the mean value of 1.483 (8) Å for (C-O)₂P(\cdots O)₂ systems, indicating bond delocalization (Allen *et al.*, 1987).

In the molecule of (I), two P atoms are joined through a Csp^3 atom. The P1-C1 and P2-C1 distances differ from each other significantly (Table 1). The coordination around P1 is nearly tetrahedral, with angles ranging from 106.98 (7) to 114.31 (7)°, whereas within the phosphonate group, the geometry around atom P2 indicates a considerable distortion of the tetrahedron, especially in the O2-P2-O3 and O1-P2-C1 bond angles (Table 1). The P⁺-C(phenyl) bond lengths are very close to the mean distance of 1.793 (10) Å

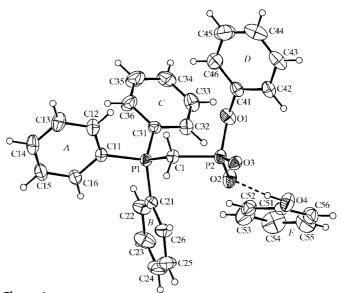
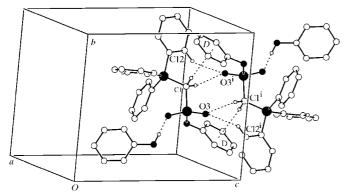
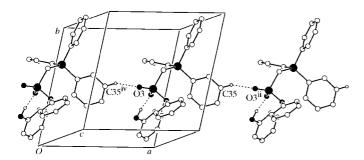


Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.


DOI: 10.1107/S0108270107032453

found for 118 $Ph_3P^+-Csp^3H_2$ fragments (3 × 118 = 354 values) in the Cambridge Structural Database (Version 5.27; Allen, 2002); the minimum and maximum distances are 1.752 (3) and 1.854 (3) Å, respectively.


All benzene rings, including the phenol ring, are planar; a maximum deviation of -0.010 (2) Å was observed for atom C12 from the least-squares plane of ring A. (The labelling scheme, A-E, applied for phenyl rings, is introduced in Fig. 1.) The C-C bond lengths and angles within these rings are typical for aromatic systems [1.384 (13) Å; Allen $et\ al.$, 1987], hence no detailed discussion is needed. The dihedral angles between the mean planes of the rings are summarized in Table 3. This spatial arrangement enables the formation of C-H···O and C-H··· π (arene) interactions; however, aromatic π - π stacking interactions are absent in the structure.

Two molecular components are linked within the selected asymmetric unit by an almost linear $O4-H4\cdots O2$ intermolecular hydrogen bond (Fig. 1 and Table 2).

There are also three short intermolecular $C-H\cdots O$ contacts (Table 2), which on the basis of observed $H\cdots O$ and $C\cdots O$ distances can be regarded as weak hydrogen-bonding interactions (Taylor & Kennard, 1982). Atoms C1 and C12 act as hydrogen-bond donors to atom $O3^i$ [symmetry code: (i)

Figure 2 Part of the crystal structure of (I), showing the formation of a centrosymmetric dimer. For the sake of clarity, C-bound H atoms that are not involved in the motif shown have been omitted. [Symmetry code: (i) -x + 1, -y + 1, -z + 2.]

Figure 3 Part of the crystal structure of (I), showing the formation of an infinite $C-H\cdots O$ chain running parallel to the [100] direction. For the sake of clarity, C-bound H atoms that are not involved in the motif shown have been omitted. [Symmetry codes: (ii) x + 1, y, z; (iv) x - 1, y, z.]

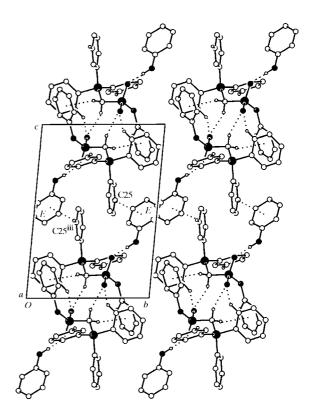


Figure 4 Part of the crystal structure of (I), showing (010) sheets generated by $C-H\cdots\pi$ interactions between chains of dimers. For the sake of clarity, C-bound H atoms that are not involved in the motif shown have been omitted. [Symmetry code: (iii) -x+1, -y+1, -z+1.]

-x+1, -y+1, -z+2], forming a centrosymmetric dimer. The former of these hydrogen bonds generates a graph-set motif of $R_2^2(8)$, while the second generates an $R_2^2(14)$ ring (Bernstein *et al.*, 1995) (Fig. 2). Such a dimer is additionally stabilized by $C1-H1A\cdots\pi(\text{ring }D)$ hydrogen bonds.

Fig. 3 shows another hydrogen-bonded motif that plays an important role in the supramolecular structure of (I). Atom C35, *via* atom H35, acts as a hydrogen-bond donor towards atom O3ⁱⁱ [symmetry code: (ii) x + 1, y, z], thereby producing an infinite C(8) chain running parallel to the [100] direction.

In summary, the combination of all three weak $C-H\cdots O$ interactions produces infinite chains of centrosymmetric dimers along the a axis. The aforementioned chains are linked into (010) sheets by $C25-H25\cdots \pi^{iii}$ interactions [ring E; symmetry code: (iii) -x+1, -y+1, -z+1; Fig. 4]. Every sheet passes through the unit cell in the domain -0.07 < y < 1.07. There are no direction-specific interactions between adjacent sheets.

Experimental

The title compound, (I), was synthesized from [(diphenoxyphosphinyl)methylidene]triphenylphosphorane, (II), which was prepared exactly as described in our previous paper (Chęcińska *et al.*, 2003). For (II): $^{31}\mathrm{P}$ NMR (CD_3CN): δ 20.98 (*d*, Ph_3P=), 28.03 [*d*, (PhO)_2P(O)–, $^2J_{\mathrm{PP}}$ = 46.4 Hz]. The ylide (II) (1.08 g, 1 mmol) was dissolved in 20 ml of acetonitrile containing 2% water. The solution was kept for 48 h at 323 K in a closed flask and evaporated. The

organic compounds

residue was crystallized from ethyl acetate, yielding 0.61 g (58%) of phenol-solvated betaine (I) in the form of colorless crystals (m.p. 476–479 K). ³¹P NMR (CDCl₃): δ –1.64 [d, (PhO)P(O)O $^-$], 212.36 (d, Ph₃P⁺, ² $J_{\rm PP}$ = 10.1 Hz). ¹H NMR (CDCl₃): δ 3.565 (dd, 2H, P – CH₂—P, ² $J_{\rm HP}$ = 15.7 and 17.1 Hz), 6.7–7.2 (m, 10H, PhO H atoms), 7.45–7.8 (m, 15H, Ph₃P H atoms), 9.44 (br s, 1H, OH). MS FAB (Cs⁺, negative ions): m/z 431 (16%), 355 (100%), 278 (8%), 261 (28%). Elemental analysis found: C 70.49, H 5.25, P 11.58%; calculated for C₃₁H₂₈O₄P₂: 70.72, H 5.36, P 11.77%.

Crystal data

C25H22O3P2·C6H6O	$\gamma = 78.35 \ (2)^{\circ}$
$M_r = 526.47$	$V = 1374.9 (5) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
a = 9.793 (2) Å	Mo $K\alpha$ radiation
b = 10.170 (2) Å	$\mu = 0.19 \text{ mm}^{-1}$
c = 14.374 (2) Å	T = 293 (2) K
$\alpha = 82.78 \ (2)^{\circ}$	$0.5 \times 0.2 \times 0.1 \text{ mm}$
$\beta = 80.07 (2)^{\circ}$	

Data collection

Rigaku AFC-5S diffractometer	$R_{\rm int} = 0.013$
6644 measured reflections	3 standard reflections
6293 independent reflections	every 150 reflections
4137 reflections with $I > 2\sigma(I)$	intensity decay: 1.6%

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of
$wR(F^2) = 0.082$	independent and constrained
S = 1.02	refinement
6293 reflections	$\Delta \rho_{\text{max}} = 0.27 \text{ e Å}^{-3}$
338 parameters	$\Delta \rho_{\min} = -0.24 \text{ e Å}^{-3}$

 Table 1

 Selected geometric parameters (\mathring{A} , $^{\circ}$).

P1-C1	1.7855 (14)	P2-O2	1.4815 (11)
P1-C21	1.7923 (14)	P2-O1	1.6189 (12)
P1-C11	1.7991 (15)	P2-C1	1.8202 (15)
P1-C31	1.8009 (15)	O1-C41	1.3809 (18)
P2-O3	1.4695 (10)	O4-C51	1.3523 (19)
C1-P1-C21	110.26 (7)	O3-P2-O1	111.10 (6)
C1-P1-C11	106.98 (7)	O2-P2-O1	105.09 (7)
C21-P1-C11	109.54 (7)	O3-P2-C1	107.50 (7)
C1-P1-C31	114.31 (7)	O2-P2-C1	107.85 (7)
C21-P1-C31	107.97 (7)	O1-P2-C1	101.60 (7)
C11-P1-C31	107.68 (7)	C41 - O1 - P2	124.97 (9)
O3-P2-O2	121.84 (7)	P1-C1-P2	120.06 (8)

Table 2 Hydrogen-bond geometry (Å, $^{\circ}$).

CgD and CgE are the centroids of rings D and E, respectively.

D $ H$ $\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
O4-H4···O2	0.89(2)	1.72 (2)	2.601 (2)	175 (2)
$C1-H1B\cdots O3^{i}$	0.97	2.30	3.142 (2)	145
$C12-H12\cdots O3^{i}$	0.93	2.57	3.269 (2)	133
C35−H35···O3 ⁱⁱ	0.93	2.36	3.200 (3)	150
$C1-H1A\cdots CgD^{i}$	0.93	2.79	3.727 (2)	161
$C25-H25\cdots CgE^{iii}$	0.93	2.90	3.667 (2)	141

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1.

Table 3 The dihedral angles between the mean planes for the phenyl rings (°). Symbols A-E refer to the phenyl rings as defined in Fig. 1.

Ring/ring	Dihedral angle	
A/B	78.1 (1)	
A/C	77.4 (1)	
A/D	36.1 (1)	
A/E	44.1 (1)	
B/C	72.8 (1)	
B/D	43.8 (1)	
B/E	68.5 (1)	
C/D	83.1 (1)	
C/E	58.6 (1)	
D/E	52.8 (1)	

Atom H4, involved in the O4—H4···O2 hydrogen bond, was located in a difference map and refined isotropically. All C-bound H atoms of methylene and phenyl groups were positioned geometrically (C—H = 0.97 and 0.93 Å, respectively) and constrained to ride on their parent atoms $[U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})]$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported financially by the University of Łódź (grant No. 706/505 2007) for LC and AJRP.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3145). Services for accessing these data are described at the back of the journal.

References

Abdel-Ghany, Y. S., Ihnat, M. A., Miller, D. D., Kunin, C. M. & Tong, H. H. (1993). J. Med. Chem. 36, 784–789.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–83.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). *Angew. Chem. Int. Ed. Engl.* **34**, 1555–1573.

Chęcińska, L., Kudzin, Z. H., Małecka, M., Nazarski, R. B. & Okruszek, A. (2003). Tetrahedron, 59, 7681–7693.

Kabachnik, M. I. & Medved, T. Ya. (1953). Izv. Akad. Nauk SSSR Ser. Khim. pp. 1126–1127.

Medved, T. Ya. & Kabachnik, M. I. (1951). *Izv. Akad. Nauk SSSR Ser. Khim.* pp. 620–623.

Molecular Structure Corporation (1989). MSC/AFC Diffractometer Control Software and TEXSAN (Version 5.0). MSC, The Woodlands, Texas, USA. Myers, T. C. & Jibril, A. O. (1957). J. Org. Chem. 22, 180–182.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stryer, L. (1995). In *Biochemistry*. New York: W. H. Freeman and Company. Taylor, R. & Kennard, O. (1982). *J. Am. Chem. Soc.* **104**, 5063–5070.